Overview
Input Schema
Hard-code parameters, set defaults, or restrict what the agent controls
Output Schema
Filter response fields, remove PII, reduce token usage
Agentic RAG
Semantic querying for large payloads before loading into memory
Custom Instructions
Add context to help the agent use tools effectively
Accessing the Editor
- Open your agent in the Workbench
- Navigate to the Tools section
- Click the Settings icon next to any tool
Input Schema Editor
The Input Schema tab lets you control the parameters sent to tools.Hard-coding Parameters
Force specific values regardless of AI decisions:- locked: true - AI cannot override this value
- default: true - AI can override if needed
Use Cases
Restrict Repository Access
Restrict Repository Access
Hard-code the repository parameter to prevent the agent from accessing other repos:
Set Default Filters
Set Default Filters
Provide sensible defaults the AI can override:
Hide Sensitive Parameters
Hide Sensitive Parameters
Hard-code API keys or tokens:
Output Schema Editor
The Output Schema tab filters API responses before they reach the AI.Selecting Fields
Toggle fields on/off to include/exclude them:Benefits
- Reduce token usage - Only send relevant data
- Remove PII - Exclude sensitive fields automatically
- Focus responses - Help the AI concentrate on important data
Agentic RAG Configuration
For tools that return large datasets, enable Agentic RAG to let the agent query semantically.How It Works
- Backend API returns large payload (1M+ records)
- Agent provides semantic query at runtime
- xpander filters using vector search
- Only relevant items loaded into context

